
Solving Mutual Exclusion (2)

Concurrency and Parallelism — 2017-18 
Master in Computer Science

(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>



Summary

•Solving Mutual Exclusion
–Mutex based on Specialized Hardware 

Primitives

• Reading list:
– Chapter 2 of the book

Raynal M.;
Concurrent Programming: Algorithms,
Principles, and Foundations;
Springer-Verlag Berlin Heidelberg (2013);
ISBN: 978-3-642-32026-2

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 2



Mutex Based on
Specialized Hardware Primitives 
• In the previous class we studied mutual exclusion 

algorithms based on atomic read/ write registers.
• These algorithms are important because

– Understanding their design and their properties provides us with 
precise knowledge of the difficulty and subtleties that have to 
be addressed when one has to solve synchronization problems. 

– They capture the essence of synchronization in a read/write 
shared memory model. 

• Nearly all shared memory multiprocessors propose 
built-in primitives (i.e., atomic operations 
implemented in hardware) specially designed to 
address synchronization issues.

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 3



The test&set()/reset() primitives

• This pair of primitives, denoted test&set() and 
reset(), is defined as follows:

• Let X be a shared register initialized to 1.

• X.test&set() sets X to 0 and returns its previous 
value.

• X.reset() writes 1 into X (i.e., resets X to its initial 
value).

• Both test&set() and reset() are atomic.
Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 4



Mutual exclusion
with test&set()/reset()

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 5

ümutual exclusion
üprogress

X +
nX

i=1

ri = 1Invariant?

Really??



The swap() primitive

• Let X be a shared register.

• The primitive X.swap(v) atomically assigns v to X 
and returns the previous value of X.

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 6



Mutual exclusion with swap()

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 7

ümutual exclusion
üprogress

Assumes ‘r’ was 
not changed 

(i.e., r=1) 

X +
nX

i=1

ri = 1Invariant?

Really??



The compare&swap() primitive

• Let ‘X’ be a shared register and ‘old’ and ‘new’ 
be two values.

• The primitive X.compare&swap(old, new)
– returns a Boolean value
– is defined by the following code that is assumed to be 

executed atomically:

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 8



Mutual exclusion
with compare&swap()

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 9

old new
X is an atomic compare&swap register initialized to 1



Mutual exclusion
with compare&swap()

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 10

ümutual exclusion
üprogress

X is an atomic compare&swap register initialized to 1

X +
nX

i=1

ri = 1Invariant?

Really??



Starvation freedom

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 11

• All the previous algorithms for implementing 
mutexes with

test&set()
swap()
compare&swap()

are not starvation free!

This means that in presence of contention a process pi
may always “loose the race” and never get the lock

ümutual exclusion
C progress for all

the processes



Mutual exclusion: deadlock
and starvation-free algorithm

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 12

ümutual exclusion
üprogress
üno starvation



The fetch&add() primitive

• Let X be a shared register.

• The primitive X.fetch&add() atomically adds 1 to 
X and returns the new value.
– In some variants the value that is returned is the previous 

value of X.
– In other variants, a value c is passed as a parameter and, 

instead of being increased by 1, X becomes X + c.

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 13



Mutual exclusion with 
fetch&add()

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço ©	FCT-UNL	2017-18§ 14

Not atomic!
Why does it work?

ümutual exclusion
üprogress
üno starvation
üfairness



The END

Oct	25,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 15


